
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 A

pr
il 

20
24

 

royalsocietypublishing.org/journal/rspb
Research
Cite this article: Young EA, Chesterton E,
Lummaa V, Postma E, Dugdale HL. 2023

The long-lasting legacy of reproduction:

lifetime reproductive success shapes expected

genetic contributions of humans after 10

generations. Proc. R. Soc. B 290: 20230287.
https://doi.org/10.1098/rspb.2023.0287
Received: 3 February 2023

Accepted: 17 April 2023
Subject Category:
Evolution

Subject Areas:
behaviour, evolution, genetics

Keywords:
fitness proxy, genetic contribution,

lifetime reproductive success, human,

life history, pedigree
Author for correspondence:
Euan A. Young

e-mail: e.a.young@rug.nl
© 2023 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
†Shared last-authorship.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6619769.
The long-lasting legacy of reproduction:
lifetime reproductive success shapes
expected genetic contributions of
humans after 10 generations

Euan A. Young1, Ellie Chesterton2, Virpi Lummaa3, Erik Postma4,† and
Hannah L. Dugdale1,2,†

1Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747AG, The
Netherlands
2Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
3Department of Biology, University of Turku, Turku 20014, Finland
4Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK

EAY, 0000-0001-9370-9681; EP, 0000-0003-0856-1294; HLD, 0000-0001-8769-0099

An individual’s lifetime reproductive success (LRS) measures its realized
genetic contributions to the next generation, but how well does it predict
this over longer periods? Here we use human genealogical data to estimate
expected individual genetic contributions (IGC) and quantify the degree to
which LRS, relative to other fitness proxies, predicts IGC over longer
periods. This allows an identification of the life-history stages that are
most important in shaping variation in IGC. We use historical genealogical
data from two non-isolated local populations in Switzerland to estimate the
stabilized IGC for 2230 individuals approximately 10 generations after they
were born. We find that LRS explains 30% less variation in IGC than the best
predictor of IGC, the number of grandoffspring. However, albeit less precise
than the number of grandoffspring, we show that LRS does provide an
unbiased prediction of IGC. Furthermore, it predicts IGC better than
lifespan, and accounting for offspring survival to adulthood does not
improve the explanatory power. Overall, our findings demonstrate the
value of human genealogical data to evolutionary biology and suggest
that reproduction—more than lifespan or offspring survival—impacts the
long-term genetic contributions of historic humans, even in a population
with appreciable migration.
1. Introduction
Fitness is a fundamental concept in evolutionary biology concerned with how
natural selection acts on, for example, genes or phenotypes [1]. To measure how
selection acts on either of these units of selection, studies often measure their
association with a proxy for fitness. One such proxy is lifetime reproductive
success (LRS)—the total number of offspring an individual produces over the
course of its lifetime [2]—which captures the realized ability of an individual
to contribute genes to the next generation, relative to conspecifics with different
genetic or phenotypic variants.

LRS’s strength as a proxy for individual fitness stems from (i) not confound-
ing the effects of selection acting on parents and offspring [3–5] and (ii) requiring
tracking only one generation of individuals. LRS is therefore one of the most
widely used fitness proxies for the estimation of the strength and direction of
natural selection in both free-living and captive populations [6]. However, we
have little understanding of the extent to which LRS predicts the genetic contri-
butions of individuals beyond initial generations [7] and how this compares to
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other fitness proxies (but see [8]), or in other words, which
part(s) of an individual’s life history are the key determinants
of these long-term genetic contributions.

An individual’s expected genetic contributions (IGC)—
the proportional contribution of an individual to the gene
pool at a specific point in time—is expected to stabilize
over generations and enable the estimation of the genetic
contributions over far longer periods [7,9,10]. Assuming,
among others, random mating, non-overlapping generations,
negligible inbreeding and stable population size, stabilization
is predicted to occur after approximately 10 generations in a
population of 1000 individuals, but longer in larger popu-
lations or if any of these assumptions are violated [7,9,11].
Largely in line with these theoretical predictions, three studies
ofwild vertebrate populations found IGC to be relatively stable
after around eight generations [7,10,12] (though other studies
have measured expected genetic contributions over shorter
periods; e.g. [13]). They also found that LRS may predict vari-
ation in IGC, but the amount of variation explained varied
greatly among studies (less than 1–48%; electronic supplemen-
tary material, table S1) [7,12,14]. The latter is expected as an
individual’s realized genetic contribution is the ultimate
outcome of many factors (e.g. selection, migration, environ-
mental stochasticity and genetic drift), all of which we expect
to vary among study systems. For example, we expect LRS to
be a poor predictor of IGC if long-term stochastic processes
override an initial adaptive response to selection.

The degree to which LRS predicts IGC may also vary with
aspects of a species’s or population’s life history. For example,
given a similar number of generations, we could expect the
correlation between LRS and IGC to be lower in species that
are long-lived and reproduce over longer time periods, as
due to the longer time span there is a greater likelihood that
they are exposed to either stochasticmortality events (e.g. a dis-
ease outbreak) or changes in selection pressures (e.g. the
appearance of a new predator, as in a study by Alif et al.
[12]). However, thus far only species with relatively short gen-
eration times (e.g. approx. 2–4 years [7,10,12,14]) have been
examined. This is at least partly for practical reasons: estimat-
ing IGC and demonstrating their stabilization in longer lived
species requires individual-based data across longer time
periods, which are generally more difficult to obtain.

Human genealogical data, which typically spans centuries
rather thandecades, provideapowerful opportunity to examine
the extent to which LRS predicts long-term genetic contri-
butions in a long-lived species with relatively long generation
times. Furthermore, by comparing the predictive power of
LRS to other fitness proxies, such as lifespan and the number
of grandchildren, we can identify key determinants of variation
in IGC. For example, annual survival is considered to be a par-
ticularly important driver of within-generation changes to the
gene pool (e.g. [15]) in humans. Furthermore, lifespan is associ-
ated with increased reproductive success [16]. Hencewewould
expect lifespan to predict IGC, albeit probably with less accu-
racy than LRS as it does not directly measure reproductive
output. The predictive power of LRS is also likely to vary
depending on if it is conditioned on offspring survival until a
certain age: in pre-demographic transition humans, infant mor-
talitywas high [17,18]. Therefore,measuringLRS as the number
of offspring surviving to adulthood and not only the number
born should better predict IGC. Finally, variation in both
the survival and reproduction of an individual and their off-
spring are ultimately captured by an individual’s number of
grandoffspring [19],which is expected toprovide amore precise
predictor of IGC than LRS. Quantifying the differences in the
predictive power of lifespan, number of (surviving) offspring
and the number of grandoffspring will give insight into the
relative importance of parental and offspring survival and
reproduction in shaping IGC in humans.

The number of grandoffspring is not only expected to
explain more variation in IGC (i.e. to be a more precise predic-
tor), but it may also be less biased than LRS (i.e. more accurate).
For example, LRSmay overestimate IGC if there is an offspring
quality versus quantity trade-off or sibling competition, caus-
ing offspring from larger families to have lower fitness [20].
Conversely, sibling cooperation (e.g. [21]) could cause LRS
to underestimate IGC if individuals with many siblings
have improved fitness. A first step towards identifying the
underlying causes of any bias is testing if LRS systematically
over- or underestimates IGC. We can do this by quantifying
the relationship between an individual’s LRS and the average
IGC of their offspring (i.e. of siblings). If this relationship is
negative, LRS overestimates the IGC of individuals with high
LRS (e.g. due to quality–quantity trade-off or sibling compe-
tition), whereas a positive relationship is suggestive of LRS
underestimating IGC. This may be the result of e.g. sibling
cooperation [21], additive genetic variance in LRS [22] or
other parental quality effects (e.g. mediated by socio-economic
status) that positively affect both parental reproduction and
offspring survival/reproduction.

Here, we quantify the degree to which LRS shapes pedi-
gree-derived estimates of stabilized IGC measured after at
least 8, and on average 10, (potential) generations [10] using
data from a genealogical archive containing the life histories
of humans from two parishes in the canton of Glarus, Switzer-
land. This dataset spans up to 16 generations, containing
individuals born in the sixteenth to the twentieth century.
We estimate IGC and infer the number of generations required
to reach stabilization. We then use generalized linear mixed
models (GLMMs) to examine the degree to which IGC are
predicted by four fitness proxies: (i) lifespan, (ii) LRS counting
all born offspring (LRS), (iii) LRS counting only offspring
surviving to adulthood (LRSSA) and (iv) the number of grand-
offspring. We then compare the predictive power of these four
proxies to elucidate the importance of parental and offspring
survival and reproduction in shaping IGC, and compare
these results to those of previously studied bird species. Finally,
we test if LRS provides a biased prediction of IGC by estimat-
ing the relationship between an individual’s LRS and the
average IGC of their offspring.
2. Methods
(a) Dataset
We use life-history information, including an individual’s year of
birth, marriage and death, and the identity of its children, for indi-
viduals born or married in two parishes in the canton of Glarus,
Switzerland: Linthal (46°550 N, 9° E) and Elm (46°550 N, 9°100 E).
The genealogical archive from which these data were extracted is
predominantly based on church records but includes records for
unmarried adults, children dying before reaching adulthood,
and illegitimate children [23] (although these are rare, in line
with expectations of historical European populations [24,25]).

The data span over four centuries, containing individuals born
from 1562 to 1996. The pedigree reconstructed from these records
contained 44 967 individuals, 35 882maternities, 35 973 paternities
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and 89 904 full-sibling relationships. The mean maternal and
paternal sibship sizes were 4.01 and 4.42, respectively. There
were 8667 founders (individuals with unknown parents), and the
mean and maximum pedigree depth were 6.9 and 16 generations,
respectively.

During the eighteenth to twentieth centuries, population sizes
of Linthal and Elm were in the ranges 994–2645 and 516–1051,
respectively [26,27]. The household and family structures are
representative of Central Europe as a whole (nuclear and patriar-
chal), with new households being formed after couples had
accumulated enough wealth to get married [28]. As such, the
median age-at-first reproduction for females was 25, and for 95%
of individuals occurred after 19 years of age. For individuals
who reproduced, the median number of offspring born was
4 (range = 1–24). Families were largely sustained through the farm-
ing of sheep and cattle, with additional earning through weaving
and spinning becoming possible in the eighteenth century [29],
particularly in Linthal. Over the course of the entire study period
and across all individuals, the median lifespan was 49 years and
74% of individuals lived beyond age 5.

(b) Estimation of individual genetic contributions
We estimated IGC followingHunter et al. [10], which uses pedigree
information to estimate expected genetic contributions to future
generations, under the expectation of random Mendelian segre-
gation of alleles (e.g. each parent contributes 50% of an
offspring’s alleles). Hence, IGC provides an estimate of the allele
copies given to descendants, and the realized contribution will
vary around this expectation. The relatedness matrix, containing
the relatedness coefficients between all pairs of individuals (e.g.
for a parent and offspring, the relatedness coefficient is 0.5), was
created in R 4.1.1 [30] using the package nadiv 2.17.1 [31]. These
relatedness coefficients become expected genetic contributions
when directionality is considered: an individual gives its offspring
50% of their alleles, and therefore the absolute expected genetic
contribution an individual makes to its offspring is 0.5. We will
henceforth refer to the individual making the expected genetic
contributions as the focal individual and to the individual receiving
the genetic contribution as the descendant.

IGC are equal to the expected genetic contributions pro-
portional to the total gene pool for a given population at a given
time point (i.e. all individuals alive and located in the study popu-
lation). We used birth and marriage locations along with birth
and death years to determine if individuals were present in
the population (Linthal and Elm were analysed separately) for
all individuals with a known birth year (Linthal, n = 19 558, 98%;
Elm, n = 16 484, 97%; electronic supplementary material S1). To
estimate IGC, we subset for each individual in each year the
relationship matrix to include only the focal individual (row)
and all individuals present in the specific population at that
point (columns), starting at the focal individual’s birth year (or
arrival year if an immigrant; see electronic supplementarymaterial
S1). The total expected genetic contribution of a focal individual
to the gene pool in a given year is the sum of this subset of related-
ness coefficients. This was done for all the years following an
individual’s year of birth until 1990. Following previous studies
[7,10,12,14], we did not consider IGC through non-direct descent
(e.g. kin genetic contributions) by temporarily removing parental
IDs of the focal individuals from the pedigree before creating the
relatedness matrix. Genetic contributions were converted into
IGC by dividing them by the total number of individuals present
in the population in that year.

(c) Stabilization of individual genetic contributions
Although IGC fluctuate over time, they are expected to stabilize and
become representative of longer term genetic contributions
[9,11,32]. Followingpreviouswork [7,12],we evaluated stabilization
of IGCbygrouping individuals into 10-year birth cohorts andquan-
tifying the Pearson correlation coefficient between IGC to each
subsequent year and the final year considered (1990). Ten-year
cohorts were used to ensure each cohort had at least two focal indi-
viduals, the smallest sample size that allows for the calculation of a
correlation coefficient. When the correlation remained above a
0.95 threshold for a period of two generations, IGCwere considered
to have stabilized. We defined a generation as the mean (± s.e.)
parental age at offspring birth, which were 32.2 ± 0.04 and
32.1 ± 0.05 years for Linthal and Elm, respectively.

According to this criterion, IGC had stabilized in 1990 for
individuals born before 1718 in Linthal (or after 8.5 generations)
and before 1734 in Elm (after 8 generations; figure 1; see elec-
tronic supplementary material, figure S2 for a comparison
to non-stabilized IGC). Hence, IGC to the year 1990 from
3475 focal individuals (1605 from Linthal and 1870 from Elm)
were used for further analyses. The length over which IGC
were estimated was at least 274 and 257 years, and on average
10.1 and 9.9 generations (324.81(±0.86) and 319.26 (±0.93)
years, for Linthal and Elm, respectively), with the birth years
of focal individuals ranging between 1575 and 1734 (electronic
supplementary material, figure S3).

(d) Migration
Despite having fulfilled our criterion for stabilization, IGC will
continue to change in populations with a non-zero migration
rate (electronic supplementary material, figure S4). This is because
immigration decreases IGC by adding to the gene pool but not to
the IGC of focal individuals, thereby diluting their contribution to
the gene pool. Emigration also decreases IGC and can lead to line-
age extinction if emigrating offspring do not contribute to the local
gene pool. In addition, migration will introduce variation in IGC
not captured by any fitness proxies, and hence weakening their
correlation with IGC.

To quantify the potential effect of migration on IGC, we
classified individuals born and married in the population as resi-
dents, individuals born outside but married in the population as
immigrants, and individuals born in the population but married
outside as emigrants. In Linthal and Elm the vast majority of
individuals were residents (62.9% and 61.5%, respectively), but
both populations had a substantial proportion of immigrants
(16.5% and 15.8%, respectively) and emigrants (20.6% and
22.7%). There was also a very small percentage of individuals
who moved between the two parishes (from Linthal to Elm,
0.17%, and Elm to Linthal, 0.22%; see electronic supplementary
material, figure S1).

To quantify how often lineage extinction was the result of
descendants dispersing versus dying before reproduction, we
calculated for each focal individual the percentages of now
deceased descendants (traced using the visPedigree [33] package)
that successfully continued the lineage (i.e. reproduced in the
population), did not reproduce in the population, and dispersed
(emigrated) out of the population.

(e) Fitness proxies
We considered the following fitness proxies: lifespan (the difference
between the death date and birth date), LRS (lifetime number of off-
spring produced), LRSSA (lifetime number of offspring surviving to
adulthood) and the number of grandoffspring (total number of off-
spring of an individual’s offspring). Adulthood was defined as the
sex-specific fifth percentile of age-at-first reproduction for thewhole
dataset (females: 19.1 years, males: 21.2 years). We estimated life-
span, LRS and LRSSA for all individuals for which we had an
estimated IGC and with known birth and death dates (n = 2358),
including individuals that died before adulthood. For the number
of grandoffspring, we additionally required that the individual’s
offspring also had their complete life-history recorded (n = 2358).
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Figure 1. Stabilized IGC. Pearson correlation coefficients between the genetic contribution of individuals grouped into 10-year birth cohort in each year and their
final year IGC. Stabilization is defined as the correlations exceeding 0.95 (horizontal dotted line) for at least two generations pre-1990 (vertical dotted line) [4]. Plots
are shown for the parishes of (a) Linthal and (b) Elm. Only stabilized cohorts are shown here (born before 1718 for Linthal and 1735 for Elm), but see electronic
supplementary material, figure S2.
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( f ) Statistical analyses
We used GLMMs to examine the relationship between IGC
and the four fitness proxies. We used a zero-inflated beta
model in which the zero-inflated part of the model modelled
the probability of an individual’s IGC to the present-day gene
pool being equal to zero (i.e. the probability of lineage extinction)
using a logit-link function. It should be noted that this models
the probability of an individual having no living descendants
in the focal population, not the extinction probability of a specific
gene. The distribution of the non-zero proportional genetic
contributions was modelled using a beta distribution.

We controlled for differences in mean IGC, for example
due to differences in population size, between both parishes
(Linthal or Elm) and the sexes (female or male) by including
these as categorical fixed effects. An individual’s 10-year
parish-specific birth cohort was fitted as a random intercept to
control for temporal variation in mean IGC. We furthermore
included a random slope for the effect of each of the fitness
proxies to allow their relationship with IGC to vary among
parish-specific birth cohorts. Initially a two-way interaction
between sex and parish was included, but this was removed
if non-significant to aid the interpretation of first-order
effects. Model structures were the same for the zero-inflated
and beta parts of the model. Counting only individuals that
were informative for all predictors, the sample size for these
models was 2230.

To quantify how much variation in IGC each fitness proxy
explained, we estimated the Bayesian R-squared for each of our
models [34]. The significance of the differences in Bayesian
R-squared values was evaluated through finding the mode and
95% credible intervals of the difference between the R-squared
values of the models being compared (ΔR2) and seeing if these
95% credible intervals overlapped 0.
We quantify the bias in LRS in predicting IGC by examining
the slope of the relationship between the LRS of an indivi-
dual and the mean IGC of their offspring. Here we used
the same individuals as before, but excluding non-reproducing
individuals, leaving 1256 individuals. For this model, we
performed a beta regression (with no zero-inflated distribution
included) controlling for the same confounding fixed and
random effects structures as above. Beta regressions require
response variables to non-zero values and we therefore added
10−10 to all mean offspring genetic contributions. Here, no
relationship would indicate LRS is an unbiased predictor of
IGC. We additionally examined if the lifespan of parents was
an important covariate, as offspring whose parents died younger
might receive less parental care, potentially impacting IGC of
their offspring.

Both zero-inflated beta and beta models were implemented
in the R package brms (2.16.1 [35]) using the Markov chain
Monte Carlo sampler Rstan (2.21.2 [36]) using R (4.0.2 [30]).
For each model, we ran four runs of 6000 iterations across four
cores, sampling every 10 iterations, after a warm-up of 2000 iter-
ations. We set the delta parameter to 0.95 to aid convergence.
Default priors were used: flat for all fixed effects and a student’s
t distribution for random effects. Convergence of models was
confirmed based on R hat parameters and Monte Carlo standard
errors being approximately 1 and 0, respectively. The pp_check
function was used to check that simulated data from the model
matched the original data well. We used the probability of
Direction ( pd) [37] (the percentage of the posterior distribution
that has the same sign as the median) to infer statistical signifi-
cance. In line with Makowski et al. [37], we classified pd values
as follows: 0.95–0.975 = trend effect; 0.975–0.99 = significant;
greater than 0.99 = highly significant. For random effects, pd is
not applicable and no significance criteria were used. Figures
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were created using the packages brms, ggplot2 (3.3.5, [38]) and
ggpubr (0.4.0 [39]).

3. Results
(a) Individual genetic contributions
We estimated the IGC for 3475 individuals (1605 from Linthal
and 1870 from Elm), born between 1575 and1735, to the
individuals making up the gene pool of the parishes of Linthal
and Elm in 1990. The probability of an individual’s lineage
going extinct was high, with 73% of individuals having an
IGC of zero to the 1990 population (electronic supplementary
material, figure S5a). The majority of extinctions are because
an individual did not survive to reproductive age (23.4%), sur-
vived until reproductive age but had no offspring (43.5%), had
offspring but none survived to adulthood (45.3%) or had sur-
viving offspring but no grandoffspring (52.7%) (electronic
supplementary material, figure S5). This leaves approximately
20% of the individual lineage extinctions occurring after indi-
viduals had at least one grandchild. Over all individuals
included in the analysis, a median of 15.9% of their descen-
dants reproduced and thereby continued the lineage, and
14.6% of the descendants had not yet reproduced but were
still alive. This leaves 69.7% of the descendants who failed to
continue the lineage, and of these, a median of 40.3%, due to
emigration rather than deathwithout reproducing. Individuals
whose lineages did not go extinct on average contributed 0.1%
of the genetic material present in the population in 1990 (elec-
tronic supplementary material, figure S5a), although one male
contributed 0.6% of the Linthal gene pool.

Lifespan, LRS, LRSSA and the number of grandoffspring
were positively associated with IGC (Beta distribution, pd>
0.975; table 1; figure 2). We also found a negative effect of any
of the fitness proxies on theprobability of an individuals’ lineage
going extinct (zero-inflated distribution, pd> 0.975; table 1).

IGC (distribution and extinction probability) were depen-
dent upon several other factors. First, individuals born in
Linthal had lower IGC, probably because of its larger popu-
lation size (all models, beta distribution, pd > 0.975; table 1).
In line with this, there was no difference in probability of line-
age extinction (zero-inflated distribution, pd < 0.975; table 1).
There were no interactions between these effects and sex
( pd < 0.975; electronic supplementary material, table S2) and
no differences between males and females were found (beta
and zero-inflated distribution, pd < 0.975; table 1). Further, we
found that IGC of individuals varied among birth cohorts
(both in their extinction probability and in the non-zero IGC
values; see random effects; table 1). There was also variation
among birth cohorts in the slope of the relationship between
each fitness proxy and IGC, but except for the slope of the
relationship between probability of lineage extinction and
LRS, LRSSA and the number of grandoffspring, this variation
was small. Finally, a supplementary analysis showed that the
proportion of offspring migrating was associated with lower
IGC and higher extinction probabilities, but accounting for
this did not substantially change the predictive power of the
models (electronic supplementary material S2 and table S3).

(b) How well do fitness proxies predict individual
genetic contributions?

Although all fitness proxies predicted IGC, we found that they
significantly varied in their predictive power. As expected, the
number of grandoffspring explained most variation in IGC
(R2 = 57.3%; table 2), explaining 44.3 percentage points more
variation than lifespan, 29.8 percentage points more than
LRS and 25.2 percentage points more than LRSSA (table 2).
Contrary to expectations, the difference in predictive power
between LRS and LRSSA was very small (ΔR2 = 2.7%, Δ95%
Credible Intervals (CrI)=−1.8% – 9.2%; table 2). A null model
containing no fitness proxy but all other first-order fixed
and effects and random effects explained only 1.4% (95%
CrI = 0.9%–2.2%) of the variation in IGC.

(c) Is lifetime reproductive success an unbiased
estimate of individual genetic contributions?

The per capita IGC of an individual’s offspring increased
with LRS, but the slope of this relationship was very shallow
( pd > 0.975, posterior mode = 0.070, 95% CrI = 0.052–0.089;
figure 3). This finding suggests that LRS slightly underesti-
mates IGC in larger family sizes. Furthermore, individuals
who lived longer had offspring with higher IGC (pd > 0.975,
posterior mode = 0.010, 95% CrI = 0.006–0.014). As before,
and likely due to population size differences, mean IGC of off-
spring was lower for individuals born in Linthal (pd > 0.975,
posterior mode =−0.162, 95% CrI =−0.339–0.011) but sex
differences showed only trend effects and the offspring of
males did not have lower mean IGC ( pd = 0.962, posterior
mode =−0.066, 95% CrI =−0.173–0.04). No interactions were
significant ( pd < 0.975; electronic supplementary material,
table S4).

Finally, we found that variance in the mean IGC of
offspring was explained by their parents’ birth cohort (pos-
terior mode = 0.163, 95% CrI = 0.032–0.306). The parent’s
birth cohort also affected the slope of relationship between
LRS and mean offspring IGC but this variation was relatively
small (posterior mode = 0.014, 95% CrI = 0.001–0.038).
4. Discussion
We quantified the extent to which LRS and other fitness
proxies predict stabilized IGC measured after approximately
10 generations (321 years), in historical humans from the
Swiss Canton of Glarus. We found that LRS predicted 28%
of the variation in IGC, showing that reproductive success
shapes the long-term genetic contributions of individuals
even in a population of a long-lived species with appreciable
migration that has experienced large and rapid changes in
its environment.

We have shown that different fitness proxies varied in their
predictive power of IGC (table 2), allowing us to identify the
components of an individual’s life history that are most impor-
tant in determining its IGC. Overall, the model containing the
number of grandoffspring explained 57% of variation in IGC,
whereas the next best fitness proxy (LRSSA) explained only
32%, followed by LRS (28%) and lifespan (13%). This is broadly
in line with results based on genetic contributions estimated
over four generations in nineteenth-century Sweden [40]. The
number of grandoffspring explaining most variation was
expected, as the number of grandoffspring incorporates the
most information about the life history of an individual. How-
ever, together with our finding that LRSSA and LRS explain a
similar amount of variation in IGC (28% versus 32%) and
that lifespan explains only 13% of the variation in IGC, this
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Figure 2. The relationship between IGC and four fitness proxies: (a) lifespan, (b) LRS, (c) LRSSA and (d ) the number of grandoffspring. The plots were produced
using the conditional_effects() function from the R package brms to standardize points across values for covariates. Shaded areas indicate 95% credible intervals of
the model estimate. Data are conditioned on the mean values of the other predictors (birth cohort, parish and sex). Data points are partially transparent to aid
visualization.

Table 2. On the diagonal, Bayesian R2 values (R2 and 95% credible intervals) for models containing either lifespan, LRS, LRSSA or the number of
grandoffspring and any other significant covariates retained in the model. Pairwise Pearson correlation coefficients between fitness proxies are shown above the
diagonal (also see electronic supplementary material, figure S6) and the difference in Bayesian R2 values are shown below the diagonal (ΔR2 and Δ95%
credible intervals). Δ95% credible intervals that do not overlap with zero are in italics.

lifespan LRS LRSSA the number of grandoffspring

lifespan 13.2% [10.8–15.8] 0.55 0.54 0.43

LRS 14.8% [10.5–19.1 27.9% [24.2–31.6] 0.94 0.71

LRSSA 19.2% [14.5–23.7] 2.7% [−1.8–9.2] 32% [27.8–36.0] 0.74

number of grandoffspring 44.3% [39.5–48.2] 29.8% [24.2–34.8] 25.2% [19.9–31.0] 57.3% [53.5–60.8]
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suggests that offspring mating and reproduction is a much
greater determinant of IGC than survival (of both offspring
and the individual themselves), even in a population with
substantial childhood mortality (electronic supplementary
material, figure S1). The lack of a significant increase in the
predictive power of LRS when accounting for infant mortality
could be due to the replacement effect that can occur in humans
where the death of a child during childhood results in another
child being born soon after and the number of children surviv-
ing to adulthood to be largely unaffected. Finally, although we
found no difference between the sexes, the highest IGC were
for multiply-marrying males whose first wives died around
the age of menopause, allowing the widowers to remarry a
younger female and achieve a LRS (and IGC) greater than
males who did not remarry.

Although the number of grandoffspring will naturally be a
more precise predictor of IGC than LRS because it is closer in
time to our estimates of IGC, and therefore incorporates more
of the stochasticity that influences IGC, it is not necessarily
the most useful fitness proxy. First, although statistically sig-
nificant, we found only a weak relationship between an
individual’s LRS and the average IGC of its offspring, showing
that LRS is a relatively unbiased measure of IGC. The fact that
the association is positive suggests that the increase in predic-
tive power between LRS and number of grandoffspring is
not due to LRS being a biased predictor. Albeit small, the posi-
tive relationship between LRS and per capita IGC argues against
the existence of an offspring quality–quantity trade-off, which
has been previously found in humans [41–43]. Instead it is
somewhat suggestive of positive sibling effects, perhaps due
to alloparenting [21], or an overriding effect of parental quality
and resources (e.g. through socio-economic status) (e.g. [44,45])
or additive genetic variance in LRS [22]. Second, there are
practical reasons that limit the utility of the number of grand-
offspring as a fitness proxy: Not only is it more sampling
intensive, reliably counting the number of grandoffspring
may not be feasible if a significant proportion of the population
disperses outside of the study site, or offspring cannot be
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Figure 3. The relationship between mean offspring IGC and LRS. The plots
were produced using the conditional_effects() function from the R package
brms to standardize points across values for covariates. Shaded areas indicate
95% credible intervals. Data points are partially transparent to aid
visualization.
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linked to parents once they have reached independence. Third,
the number of grandoffspring confounds the fitness ofmultiple
individuals, which can be problematic when estimating the
strength of phenotypic selection [3–5]. All things considered,
our results therefore strengthen the case for LRS as an evol-
utionary relevant and relatively unbiased fitness proxy when
it comes to the study of selection in humans, assuming our
findings are representative for other populations and time
periods.

Although at first sight high, our finding that 70% of indi-
vidual lineages went extinct over the study period is similar
to that found in previous studies on pedigreed populations
of birds, which reported extinction probabilities of 61–71%
(electronic supplementary material, table S1), and compar-
able with levels of lineage extinction in bighorn sheep [13],
and in humans after four generations in Sweden [46]. The
main difference between our results and those for the three
bird studies [7,12,14] was that when we measured LRS at a
later point in the offspring’s life (i.e. LRSSA), the predictive
power of LRS for IGC did not increase greatly. This is in con-
trast with, for example [14], which found that offspring
survival was a key determinant of reproductive success.
Our results therefore suggest that despite substantial infant
mortality, offspring survival to adulthood is a less important
determinant of IGC than mating and reproductive success
in humans.

The amount of variation in IGC explained by LRS measured
close to birth (28%) in this studywas similar to previous findings
for song sparrows and scrub-jays (37% and 32%, respectively),
but higher than for house sparrows (0–4%). While the role of
migration in the latter island population is likely to be small,
the low explanatory power of LRS is potentially due to a popu-
lation bottleneck that occurred between the timepoint when
fitness proxies were measured and when IGC was estimated
[12]. This could have caused stochastic mortality resulting in
low predictive power of fitness proxies. Another factor explain-
ing different findings across populations is the role of
stochasticity in driving variation in LRS itself. LRS is influenced
by both environmental and genetic components with the
environment contributing most of the variation [47], including
in humans [48]. In species where the environment determines
less variation in LRS, LRSwould be expected to be a greater pre-
dictor of IGC [7,8]. Here, we showed that environmental effects
were an important factor, with non-negligible variation in IGC
being explained by an individual’s birth cohort (table 1). Further,
as mean LRS values decrease, there is a greater likelihood of
lineages going extinct due to stochasticity, drift or dispersal
[7,49], which perhaps partially explains the relatively high rates
of lineage extinction in this study (70% versus 61–71%; electronic
supplementary material, table S1). Although these species also
differ in numerous other ways. However, future studies could
examine if this phenomenon is detectable across the human fer-
tility transition towards lower LRS. In summary, there are both
similarities and differences across study systems, but the small
number of species and the lack of different human populations
(across cultures) studied limits broader extrapolation.

The majority of the variation in IGC (72%) remained
unexplained in the model containing LRS, with migration
being a contributing factor to this unexplained variation:
First, there were significant levels of both immigration and
emigration (electronic supplementary material, figure S1),
and both are expected to decouple LRS and IGC. Indeed,
the dispersal of descendants of ancestral individuals is a
particularly important driver of local lineage extinction.
Although migration is also expected to reduce the stabiliz-
ation times relative to theoretical expectations, we observed
stabilization times lower than theory predicts [9]. One expla-
nation for this is that the effective population size (number
of breeding individuals) is far lower than the total popula-
tion size, for example because a significant proportion of
individuals did not reproduce (see electronic supplementary
material, figures S1 and S5). However, other explanations
(e.g. non-random mating according to social class, drift and
fluctuating selection) are also possible, and it is clear that
we need to further our understanding of the determinants
of the time until stabilization of IGC in natural populations.
Enumerating the relative contributions of these factors
across different systems (or using simulations, e.g. [50])
should be a target of future work.

Although still in its infancy, the use of pedigree data to esti-
mate long-term genetic contributions opens a range of exciting
avenues. Building on our work using human genealogical
data, and the work on non-human animals by others [7,12,14],
future work would benefit from further exploration of the simi-
larities anddifferences among thedifferentmethodologies at our
disposal, and between gene-dropping methods [7,12,14] and
expected genetic contributions (e.g. [10]; this study) in particular,
as the two do not necessarily equate. Furthermore, while our
study has highlighted the ability of human genealogical data
to provide insight into human evolution [51,52], and the esti-
mation of fitness more broadly, applying these methods to
similar data for an array of human populations (see [53] for a
review) will allow us to quantify the degree to which these
findings hold across cultures, environments and time.
Data accessibility. All data and R scripts necessary for replicating the
analysis can be accessed at Dataverse https://doi.org/10.34894/
P2ETYZ [54].

The data are provided in the electronic supplementary material
[55].
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